Automatizace současného světa a využití robotů jsou hlavními trendy dnešní doby. Lidé, kteří se jim věnují, musí být kreativní, precizní, zvládat techniku i software. Skvělou myšlenkou to začíná a kreativní lidé s inovačním myšlením ji dokážou realizovat. A přesně takoví jsou naši absolventi!

Automatizované linky, robotická pracoviště, řídicí počítače, senzory umožňující detekovat okolní svět, automatické dopravní systémy. Sečteno a podtrženo – naším úkolem je všechno navrhnout, zkonstruovat a hlavně uvést do provozu. Na tomto studijním programu se zkrátka naučíš, jak pracovat s hardwarem i softwarem a výsledky své práce uvidíš v reálných aplikacích.

O praxi nebude nouze, už při studiu budeš mít šanci spolupracovat s předními průmyslovými podniky zabývajícími se automatizací, robotikou, elektronikou i informačními systémy. Který výrobce totiž dnes nepotřebuje automatizovat, zavádět roboty nebo informační systémy? Takovou firmu nenajdeš… Takže to, že se později v některé z nich uchytíš, ti v podstatě můžeme podepsat.

Prohlédněte si také prezentaci z online veletrhu Congroo 2021.

Trojité inverzní kyvadlo

Zkusili jste někdy jízdu na vozítku Segway, Monowheel nebo Hoverboard? Víte, jak vypadá samobalancující nebo humanoidní robot, třeba Acrobot či Pendubot? Možná jste přemýšleli, jakým způsobem jsou tyto systémy řízeny tak, aby byly bezpečné, stabilizované a robustní. Algoritmy, které se pro řízení takových systémů používají, mají společný základ v podobě metod tzv. optimálního řízení. V technické praxi byste dále našli hned několik příkladů použití těchto algoritmů pro systémy podobného charakteru. Za všechny uveďme třeba kolečkové křeslo iBOT, nakláněcí trysku s kardanovým závěsem v dolní části rakety pro stabilizaci těla rakety, dále řízení dílčích technologických částí leteckých zařízení nebo plavidel.

Roboty a jejich aplikace

Roboty se dnes uplatňují ve všech oblastech průmyslu. Výrobní podniky chtějí zvyšovat produktivitu a snižovat počet málo kvalifikovaných zaměstnanců – proto stále více potřebují roboty.

Měření zátěže pracovníků

Měření zátěže pracovníků je součástí projektu, v němž pět českých univerzit vyvíjí nové technologie se softwarem, které budou umět dokonale vyhodnotit nejčastější rizikové faktory pracovního prostředí.

Vývoj senzoru pro firmu Continental

Měření vysokých teplot v pracovní oblasti spalovacích motorů je důležitým prvkem každého moderního auta. Správné a měření teplot pomáhá řídicí jednotce vozu optimalizovat spalovací proces a tím snižovat produkci CO2, ale také pomáhá zvyšovat výkon motoru a šetřit přitom palivo.

3D Skener

3D skener je postaven na vestavěném HW myRIO od společnosti NI, který obsahuje ARM procesor (je schopen provádět sběr dat v reálném čase) a FPGA (programovatelné hradlové pole). Obsahuje také analogové vstupy, analogové výstupy, digitální I/O linky, LED diody, tlačítko a vestavěný akcelerometr. Tento HW je určen hlavně pro studenty, aby si vyzkoušeli sběr dat v reálném čase a programování hradlových polí, které je dosti náročné. Zařízení myRIO je možné programovat pomocí LabVIEW nebo v jazyce C. V aplikacích s vysokými časovými nároky není možné si dovolit časové zpoždění ani v jednotkách milisekund, proto je nutností použít systémy pracující v reálném čase (maximální zpoždění v desítkách nanosekund).

Komplexní systém pro rozvoj oblasti neinvazivního monitorování plodového EKG

Vědci z naší fakulty jsou součástí multidisciplinárního týmu, který se v rámci probíhajícího projektu zabývá vývojem řešení pro rozvoj oblasti neinvazivního monitorování plodu pomocí elektrokardiografie. Tento výzkum má za cíl zlepšení monitorace miminek před jejich narozením, na výsledky se můžeme těšit už v roce 2024.

Bezdrátové monitorovací IoT systémy

Víte, že příliš vysoká koncentrace kyslíku v místnosti může způsobit výbuch nebo požár? Jen tři měsíce trvalo vědcům z FEI, aby zareagovali na poptávku z Fakultní nemocnice Ostrava a navrhli vhodné zapojení, bezdrátovou technologii i konstrukční řešení pro senzor, který monitoruje množství kyslíku v ovzduší v místnostech.

Optická kontrola kvality výrobků

Optická kontrola kvality výrobků kamerovými systémy je technologie, která se rozšiřuje téměř do každé oblasti výroby pro zajištění kvality výrobků. Příkladem, co lze vizuálně automatizovaně kontrolovat je např. povrch materiálu, rozměr, tvar či zakřivení výrobku, pozice a přítomnost dílů, bezchybnosti montáže, balení léků či potravin atd.

Vývoj komplexního senzorického systému pro efektivní řízení snímkování magnetické rezonance

Vědci z naší fakulty jsou součástí multidisciplinárního týmu, který se v rámci probíhajícího projektu zabývá vývojem systému pro efektivní řízení snímkování magnetické rezonance. Toto řešení slibuje snadnou a rychlou přípravu pacienta při zachování kvality snímkování.

Digital Twin – Digitální dvojče robotizované a automatizované technologie

Virtualizace je výrazným trendem současného průmyslu. Stroje, produkty, procesy se nejdříve navrhují virtuálně, virtuálně se testují i ověřují a teprve následně probíhá jejich výroba.